Ingham – Beurling Type Estimates

نویسنده

  • MICHEL MEHRENBERGER
چکیده

Baiocchi et al. generalized a few years ago a classical theorem of Ingham and Beurling by means of divided differences. The optimality of their assumption has been proven by the third author of this note. The purpose of this note to extend these results to vector coefficient sums.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit Multidimensional Ingham–beurling Type Estimates

Recently a new proof was given for Beurling’s Ingham type theorem on one-dimensional nonharmonic Fourier series, providing explicit constants. We improve this result by applying a short elementary method instead of the previous complex analytical approach. Our proof equally works in the multidimensional case.

متن کامل

L and weak L estimates for the maximal Riesz transform and the maximal Beurling transform

We prove L estimates for the maximal Riesz transform in terms of the Riesz transform itself, for 1 < p ≤ ∞. We show that the corresponding weak L1 estimate fails for the maximal Riesz transform, but surprisingly does hold for the maximal Beurling transform.

متن کامل

Sharp Inequalities for the Beurling-ahlfors Transform on Radial Functions

For 1 ≤ p ≤ 2, we prove sharp weak-type (p, p) estimates for the BeurlingAhlfors operator acting on the radial function subspaces of Lp(C). A similar sharp Lp result is proved for 1 < p ≤ 2. The results are derived from martingale inequalities which are of independent interest.

متن کامل

Kernel Theorem for the Space of Beurling - Komatsu Tempered Ultradistibutions

We give a simple proof of the Kernel theorem for the space of tempered ultradistributions of Beurling Komatsu type, using the characterization of Fourier-Hermite coefficients of the elements of the space. We prove in details that the test space of tempered ultradistributions of Beurling Komatsu type can be identified with the space of sequences of ultrapolynomal falloff and its dual space with ...

متن کامل

Fourier Multipliers and Dirac Operators

We use Fourier multipliers of the Dirac operator and Cauchy transform to obtain composition theorems and integral representations. In particular we calculate the multiplier of the Π-operator. This operator is the hypercomplex version of the Beurling Ahlfors transform in the plane. The hypercomplex Beuling Ahlfors transform is a direct generalization of the Beurling Ahlfors transform and reduces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009